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Abstract

The decreasing cost of molecular profiling tests, such as
DNA sequencing, and the consequent increasing avail-
ability of biological data are revolutionizing medicine,
but at the same time create novel privacy risks. The
research community has already proposed a plethora
of methods for protecting genomic data against these
risks. However, the privacy risks stemming from epi-
genetics, which bridges the gap between the genome and
our health characteristics, have been largely overlooked
so far, even though epigenetic data such as microRNAs
(miRNAs) are no less privacy sensitive. This lack of in-
vestigation is attributed to the common belief that the in-
herent temporal variability of miRNAs shields them from
being tracked and linked over time.

In this paper, we show that, contrary to this belief,
miRNA expression profiles can be successfully tracked
over time, despite their variability. Specifically, we show
that two blood-based miRNA expression profiles taken
with a time difference of one week from the same person
can be matched with a success rate of 90%. We further-
more observe that this success rate stays almost constant
when the time difference is increased from one week to
one year. In order to mitigate the linkability threat, we
propose and thoroughly evaluate two countermeasures:
(i) hiding a subset of disease-irrelevant miRNA expres-
sions, and (ii) probabilistically sanitizing the miRNA ex-
pression profiles. Our experiments show that the second
mechanism provides a better trade-off between privacy
and disease-prediction accuracy.

1 Introduction

Since the first sequencing of the human genome in 2001,
tens of thousands of genomes and over a million geno-
types have been sequenced. The knowledge of our ge-
netic background enables to better predict, and thus an-
ticipate, the risk of developing several diseases, includ-

ing cancers, cardiovascular and neurodegenerative dis-
eases. Moreover, the genomic research progress enables
the development of personalized treatment through phar-
macogenomics, studying the effect of the genome on
drug response. One of the most important negative coun-
terparts of this genomic revolution is the threat towards
genomic privacy [11, 39]. Genomic data contains very
sensitive information about individuals’ predisposition to
certain severe diseases, about kinship, and about ethnic-
ity, all of which can lead to various sorts of discrimina-
tion. Furthermore, genomic data is very stable over time
and correlated between family members [28]. Therefore,
a lot of research has already been carried out to improve
the genomic-privacy situation (most of the related litera-
ture is surveyed in [20, 42]).

However, our genome is not the only element influ-
encing our health. Environmental factors (e.g., pollution,
diet, lifestyle, . . . ) often play a crucial role in the de-
velopment of most common diseases. Epigenetics (or
epigenomics), transcriptomics, and proteomics aim to
bridge the gap between the genome and our health status.
Multi-omics research is a logical complementary step to
genome sequencing: the DNA sequence tells us what the
cell could possibly do, while the epigenome and tran-
scriptome tell what it is actually doing at a given point
in time. Using a computer analogy, if the genome is the
hardware, then the epigenome is the software [16].

Despite the growing importance of epigenetics in the
biomedical community, privacy concerns stemming from
epigenetic data have received little to no attention so
far. With the increasing understanding of epigenetics,
it becomes clear that epigenetic data contains a vast
amount of additional sensitive information, and can thus
raise potential privacy risks. For example, a large num-
ber of severe diseases (such as cancers, diabetes, or
Alzheimer’s [21, 33, 46, 53]) are already identified to be
affected by epigenetic changes and a recent study found
that epigenetic alterations could even affect sexual orien-
tation [43]. Furthermore, epigenetic data can potentially



tell us more about whether someone is carrying a disease
at a given point in time, compared to the genome that
only informs about the risk of getting certain diseases.1

Moreover, it is still unclear whether the current genetic
nondiscrimination laws would apply to epigenetic data.
For instance, the US Genetic Information Nondiscrim-
ination Act (GINA) is limited to genetic characteristics
and epigenetic data might not be considered genetic in-
formation [18, 47].

In this work, we focus on microRNAs (abbreviated
miRNAs), an important element of the epigenome dis-
covered in the early 1990s. MiRNAs are small RNA
molecules that regulate the majority of human genes.
Studies of miRNA expression profiles have shown that
dysregulation of miRNA is linked to neurodegenerative
diseases, heart diseases, diabetes and the majority of can-
cers [21, 33, 40, 46, 53].2 Therefore, miRNA expression
profiling is a very promising technique that could enable
more accurate, earlier and minimally invasive diagnosis
of major severe diseases. As a consequence, it will cer-
tainly be increasingly used in medical practice.

In contrast to the DNA sequence, which mostly stays
constant over time, it is believed in the biomedical com-
munity that the miRNA expression levels are varying suf-
ficiently to invalidate any linkability attempts over time,
thus naturally protecting personal privacy. This work,
however, shows the contrary: despite their temporal vari-
ability, microRNA expression profiles are still identifi-
able and linkable after time periods of several months.

Contributions. In this paper, we study the temporal link-
ability of personal miRNA expression profiles, by pre-
senting and thoroughly evaluating different attacks, and
proposing defense mechanisms to enhance unlinkability.

Specifically, we first study an identification attack,
which pinpoints a specific miRNA expression profile in
a database of multiple expression profiles by knowing
the targeted profile at another point in time. Second, we
study a matching attack, which tracks a set of miRNA
expression profiles over time. We rely on principal com-
ponent analysis to pre-process the miRNA expression
levels, and on a minimum weight assignment algorithm
for the matching attack. We thoroughly evaluate these
linkability attacks by using three different longitudinal
datasets: (i) the blood-based miRNA expression levels of
athletes at two time points separated by one week, (ii) the
plasma-based miRNA expression levels of the same ath-
letes at two time points separated by one week, and (iii)
the plasma-based miRNA expression levels of patients
with lung cancer over more than 18 months and eight
time points. Our experimental results show that blood

1The only exception to this rule are Mendelian disorders, such as
cystic fibrosis, which are largely determined by our genes.

2Known relations between miRNA and human pathologies can be
found at http://www.cuilab.cn/hmdd.

miRNA expression profiles are about twice as easy to
track over time compared to plasma miRNA profiles, and
that the matching attack is more successful than the iden-
tification attack: We reach a success rate of 90% with
blood and a success rate of 48% with plasma miRNAs in
the matching attack whereas, in the identification attack,
we reach a success rate of 76% with blood and 28% with
plasma miRNAs. Moreover, we demonstrate that 10%
of the miRNAs are already sufficient to achieve similar
success rates as with all miRNAs. With the third dataset,
we also observe that the attack achieves a similar success
up to 12-month time periods.

We present two countermeasures to improve the un-
linkability of miRNA expression profiles: (i) hiding a
subset of the miRNA expressions, e.g., those that are not
relevant for medical practice, and (ii) disclosing noisy
miRNA expression profiles by adding noise in a dif-
ferentially private and distributed manner. While the
first countermeasure is useful especially in a clinical set-
ting, in which the disease-relevant miRNAs are already
known, the second countermeasure is intended to be bet-
ter suited for the biomedical research community. In this
context, as one of the objective is to discover associations
between miRNAs and diseases, it is impossible to restrict
the released data to only a few miRNAs.

We evaluate our protection mechanisms with the first
aforementioned blood-based miRNA profiles of athletes
and a fourth, also blood-based, miRNA dataset of more
than 1,000 participants that includes information about
19 diseases (at a single point in time). The former is
used to measure how temporal linkability is reduced with
our countermeasures, whereas the latter helps us evalu-
ate the evolution of accuracy (i.e., utility) in predicting
patients’ diseases from their miRNA expressions. The
experiments show that it is possible to decrease link-
ability by at least 50% for almost no loss of accuracy
(< 1%) for the majority of diseases with the noise mech-
anism. Moreover, our results demonstrate that the noise
mechanism provides better privacy-utility trade-offs than
the hiding method in 17 out of 19 of diseases, while al-
lowing more flexibility in the data usage for biomedical
researchers. This finding is reinforced by the fact that
an adversary could use correlations between miRNA ex-
pressions to infer more miRNA expressions than those
actually shared by our first countermeasure.

Organization. In Section 2, we present the biomedical
background relevant to understand our work. In Sec-
tion 3, we introduce the adversarial model. We then de-
scribe in detail our four datasets in Section 4. In Sec-
tion 5, we present the analytical tools used to carry out
our linkability attacks and our experimental results. In
Section 6, we propose and evaluate countermeasures and
compare their performance. We present the related liter-
ature in Section 7 before concluding in Section 8.
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2 Background

We briefly review the genetic concepts useful for under-
standing our paper. Epigenetics etymologically come
from the combination of epi, which means “above”,
“over” in Ancient Greek, and genetics, which means
“origin”. This term broadly refers to the study of cellu-
lar and phenotypic trait variations stemming from other
causes than changes in the genotype. These external fac-
tors are for example the in-utero or childhood develop-
ment, environmental chemicals, aging or diet. Epige-
netics can also refer to the changes themselves, such as
DNA methylation and histone modification, which alter
how genes are expressed without modifying the genome.

MicroRNAs (miRNAs) are epigenetically regulated
mechanisms discovered in the early 1990s. MiRNAs are
small non-coding RNA molecules that regulate gene ex-
pression in plants and animals. It has been shown that
60% of genes coding human proteins are regulated by
miRNAs [25]. Whereas a miRNA is a RNA molecule
containing around 22 nucleotides, miRNA expression is a
real-valued number quantified in a two-step polymerase
chain reaction (PCR) process. Different sets of miRNAs
are expressed in different cell types and tissues.

Biomedical research is notably interested in dis-
covering how miRNA expression affects physiologi-
cal and pathological processes.3 Studies of miRNA
expression profiling have demonstrated that dysregula-
tion of miRNA is linked to neurodegenerative diseases
(Alzheimer’s and Parkinson’s), heart diseases, diabetes,
and the majority of cancers [21, 33, 40, 46, 53]. MiRNA
expression profiling is hence a very promising technique
that could enable more accurate, earlier and minimally
invasive diagnosis of severe diseases. To mention one
current, concrete application, miRNA expressions taken
from blood samples suffice to detect several diseases,
such as cancer or Alzheimer’s [34, 37]. In the following,
we study the temporal linkability of miRNA expression
profiles coming from blood and plasma (serum) sam-
ples.

3 Adversarial Model

We assume the adversary gets access to miRNA expres-
sion profiles of individuals at different points in time.
Such epigenetic data is increasingly available in public
research databases, such as the Gene Expression Om-
nibus (GEO) [4] or ArrayExpress [1] databases. More-
over, such data could be leaked through a major secu-
rity breach, e.g., of a hospital server. Health data is

3Strictly speaking, miRNA is part of the epigenome while miRNA
expression is generally considered more as part of the transcriptome.
In this paper, we use the term epigenetics in its broad acceptation.

also increasingly available on the black market. For in-
stance, cyber attacks against healthcare companies have
increased by 72% from 2013 to 2014 [3]. Moreover, 91%
of healthcare companies have experienced a violation of
their databases over the last two years, and only 32%
feel they have adequate resources to defeat these inci-
dents [6]. Real-world cyber attacks show us that health
data can be hacked en masse [5, 8] or that attacks can be
more targeted towards high-profile victims [9]. Very sen-
sitive medical data of thousands of patients can also end
up online due to a human mistake [2].

In a typical scenario, the adversary would get access
to miRNA expression levels of one or multiple individu-
als from a (private) health insurance or hospital database,
and wants to match them with a (public) research dataset
of miRNA expression levels at another point in time. A
particularly sensitive scenario would be the matching of
non-anonymized healthy miRNA samples with miRNA
profiles that are known to be associated with diseases.
Also note that researchers have demonstrated that RNA
expression profiles could be matched to genotypes by re-
lying on expression quantitative trait loci (eQTLs) [48].
Therefore, if the adversary can also access the genotypes
of the victims, these genotypes provide him with fur-
ther means for de-anonymizing the corresponding (mi-
cro)RNA expression profiles [26, 30]).

4 Dataset Description

Unlike in other fields of privacy research, where large
amounts of data can be collected in a small amount of
time and at low cost, in the health-privacy field we face
the exact opposite: measuring the miRNA expression
levels of one single sample already costs several hundred
dollars. Longitudinal epigenetic data are particularly
valuable, since patients have to regularly provide their
biological samples over a long period of time. There-
fore, the four datasets used throughout the paper, and de-
scribed hereunder, represent very rich data.

We start by describing our three longitudinal datasets.
The first dataset contains the blood-based miRNA ex-
pression levels of 29 well-trained male athletes (15 en-
durance athletes and 14 strength athletes) at two points
in time, while the second dataset contains the plasma-
based miRNA expression levels of those athletes at the
same points in time.4 None of the athletes is known to
be affected by a disease. The samples were taken prior
and post exercising (time period of one week), similar to
the data previously presented in [12]. The athletes fol-
lowed a 6-day training with two training sessions a day,
except at day 4 when only one session was scheduled.

4We selected blood and plasma since these two body fluids are
likely candidates as source for biomarkers in future applications.
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The tests were conducted at Saarland Unversity (Ger-
many) for the endurance athletes, and at Ruhr University
Bochum (Germany) for the strength athletes.

In order to confirm our results, we make use of a third,
independent dataset. This dataset contains the miRNA
expression data of plasma of 26 lung-cancer patients (9
females and 17 males) over a period of more than 18
months [38], at eight time points: before surgery (tumor
resection), two weeks after surgery (abbreviated A.S. in
the graphs), and 3, 6, 9, 12, 15, and 18 months after
surgery.5 The patients’ ages range from 47 to 79. All
three longitudinal datasets include the expression levels
of 1,189 miRNAs for each individual at every time point.

Our last dataset contains the expression levels for 848
miRNAs collected from blood samples for each of 1,049
individuals [35] at only one time point. 94 of these in-
dividuals are considered to be healthy and are used as
a control group in Section 6. Most of the rest repre-
sent cases, i.e., individuals carrying one out of the fol-
lowing 19 different diseases: 124 have Wilms tumor, 73
lung cancer, 65 prostate cancer, 62 myocardial infarc-
tion, 47 chronic obstructive pulmonary disease (COPD),
45 sarcoidosis, 45 ductal adenocarcinoma, 43 psoria-
sis, 37 pancreatitis, 35 benign prostate hyperplasia, 35
melanoma, 33 non-ischaemic systolic heart failure, 29
colon cancer, 24 ovarian cancer, 23 multiple sclerosis, 20
glioma, 20 renal cancer, 18 periodontitis, and 13 stomach
tumor.

Note that a miRNA expression generally takes values
between 0 (meaning the miRNA is not expressed at all)
and tens of thousands. As we will mention later, we typi-
cally filter out miRNA whose median expressions among
all individuals are smaller than 50, since these are non-
expressed or not expressed enough to be significant.

While the last two datasets are both freely available in
the GEO database (see accession number GSE68951 and
GSE61741), the datasets consisting of athletes’ miRNA
expressions are not yet publicly available, but will be
made available soon.6 We also discuss ethical con-
siderations and how we handled these datasets in Ap-
pendix A.1.

5 Linkability Attacks

We study the extent of the linkability threat (as described
in Section 3) by means of two attacks. First, we describe
the mathematical principles behind our attacks, and then
evaluate their success on our three longitudinal datasets.

5Note that for the last two points in time, we have the miRNA pro-
files of 25 and 22 patients, respectively.

6Please contact Andreas Keller for more information about the ac-
cess to these datasets.

5.1 The Attacks
The first attack, called identification attack, refers to a
scenario in which the adversary knows the miRNA ex-
pression profile of a targeted individual and aims at find-
ing the corresponding miRNA expression profile in a
database of n miRNA expression profiles, e.g., later in
time. The second attack, called matching attack, refers to
the case where the attacker has access to two databases
of miRNA profiles collected at different points in time
and wants to match their elements together.

For both our attacks, as there are more than 1000
known miRNAs with real-valued expression levels, we
apply a pre-processing step using principal component
analysis (PCA) with whitening. In particular, we apply
the probabilistic PCA model proposed by Tipping and
Bishop [49], which relies on singular value decompo-
sition. This PCA step projects the high-dimensionality
miRNA expression vectors to smaller-dimensionality un-
correlated components. The whitening step divides the
resulting PCA components by the number of samples
multiplied by the singular values in order to provide un-
correlated expression vectors of unit variance. We then
make use of the Euclidean distance between the miRNA
expression vectors projected on the first c principal com-
ponents.

In the identification attack, we assume the adversary
has had access to the miRNA profile rt1

k , vector contain-
ing the miRNA expressions of an individual k at time t1,
and he wants to identify this individual in a database of
n miRNA expression profiles {rt2

i }n
i=1 collected at time

t2 6= t1. After having extracted the c principal compo-
nents from the whole dataset by using PCA, the adver-
sary ranks the n profiles (projected on the c components)
{r̄t2

i }n
i=1 by decreasing distance to the targeted miRNA

profile (also projected on the c components) r̄t1
k and picks

the profile with minimum distance to the targeted profile.
Formally, the adversary will select the profile r̄t2

i∗ where

i∗ = argmin
i

∥∥r̄t2
i − r̄t1

k

∥∥
2 .

In the matching attack, the adversary has access to two
databases of miRNA expression profiles at two different
time points t1 and t2. We assume that the databases are
of sizes n1 and n2, both strictly greater than 1. First, if
n1 = n2 = n, the adversary will assign one miRNA profile
at time t1 to exactly one profile at time t2. In this case,
the best assignment σ∗ is the one that minimizes the sum
of the distances between every matched pair:

σ
∗ = argmin

σ

n

∑
i=1

∥∥∥r̄t2
σ(i)− r̄t1

i

∥∥∥
2
.

This problem boils down to finding a perfect matching
on a weighted bipartite graph, with n vertices on both
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Figure 1: Success rate of the identification attack for the athletes dataset. (a) Proportion of successfully identified pairs
plotted against the number of PCA dimensions (in {1, ...,58}). (b) Probability density function (PDF) and cumulative
distribution function (CDF) of obtained ranks. (c) Proportion of successfully identified pairs plotted against the number
of miRNA expression profiles.

sides representing the miRNA profiles, and a weight on
each edge representing the Euclidean distance between
any pair of miRNA profiles (vertices), projected on the
first c principal components. We want to find the match-
ing among n! possible assignments that minimizes the
sum of the weights between vertices. Fortunately, there
exist several algorithms in the literature that find the min-
imum weight assignment in polynomial time. We use the
blossom algorithm [19], because it only has a complexity
of O(n3) and it can also be applied to general graphs.

If n1 6= n2, we fill the smallest side of the bipartite
graph with dummy vertices. Then we assign infinite
weight to all edges from actual vertices to these dummy
vertices in order to ensure that the dummy vertices will
be the least likely assigned to the vertices in the largest
side that are also present in the smallest side.

5.2 Experimental Results
We evaluate how successful both aforementioned attacks
are in breaking the privacy of our three longitudinal
datasets. We implement the attacks in Python, and make
use of the libraries Scikit-learn [13, 44] (for PCA) and
NetworkX7 (for the graph matching).

5.2.1 Identification Attack

In this subsection, we evaluate the success of an adver-
sary, who aims at identifying the miRNA profile of a tar-
geted individual in a longitudinal dataset. As mentioned
in Section 4, the first two longitudinal datasets contain
miRNA expression levels of 29 individuals collected at a
time interval of one week.

First, we compare the success rate for correctly identi-
fying samples for all possible PCA dimensions. Fig. 1(a)

7https://networkx.github.io

indicates that the blood’s miRNA expression levels are
easier to identify over time than the plasma’s miRNA ex-
pression levels. When identifying samples by their blood
miRNA expression levels, we can reach a maximum suc-
cess rate of 76% for the blood with 22 or 23 PCA dimen-
sions. The maximum success rate for the plasma is 28%
with 17, 18, 19 or 31 PCA dimensions. Note that both
achieve their highest success with a number of PCA di-
mensions around 20.

Next, we rank the miRNA profiles at time t2 in order
of increasing distance to the targeted profile rt1

k . Fig. 1(b)
shows the rank of the correct sample rt2

k by using 22 PCA
dimensions for the blood and 18 PCA dimensions for the
plasma. The correct profile is ranked within the top 2
profiles in more than 40% of the cases for the plasma,
whereas the correct sample is ranked withing the top 2
samples in 80% of the cases for the blood.

In order to get an impression on the attack’s perfor-
mance on larger datasets, we also analyze the success
of the identification attack with respect to the number of
participants in the dataset, i.e., we vary the number of
profiles among which the attacker has to identify the tar-
geted miRNA profile, again using 22 PCA dimensions
for the blood and 18 PCA dimensions for the plasma. In-
tuitively, when the number of miRNA samples increases,
the success rate of the attacker should decrease. In this
experiment, we adjust the number n of miRNA profiles
between 2 and 29 and evaluate the attacker’s success on
a subset of our datasets. In particular, for each number
of profiles n, we randomly choose 1000 different com-
binations (or fewer if necessary) of n out of 29 miRNA
profiles and run the identification attack on every sample
within this subset. Fig. 1(c) depicts the average success
rates for each number of profiles n. As expected, the
success rate monotonically decreases with the number of
participants for blood and plasma samples. For plasma,
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Figure 2: Success rate of the identification attack for the lung cancer dataset. (a) Success rate aggregated over all
identifications between any t1 and t2 plotted against the number of PCA dimensions. (b) Success rate of identifying
the miRNA profiles between time pairs t1 and t2. (c) Success rate plotted against the time period between t1 and t2.
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Figure 3: Success rate of the matching attack for the athletes dataset. (a) Proportion of successfully matched pairs
plotted against the number of PCA dimensions. (b) Proportion of successfully matched pairs plotted against the
number of miRNA profiles. (c) Proportion of successfully matched pairs plotted against the number of revealed
miRNAs.

however, this decrease is much sharper, confirming that
the blood’s miRNA expression levels provide means for
easier identification. From the curves’ slopes, we can
predict that, for larger datasets, blood based samples will
still be subject to a relatively high identification success.

In order to validate our findings, we also evaluate
our experiments on our other longitudinal, independent
dataset containing plasma miRNA profiles from 26 indi-
viduals with lung cancer collected over up to eight dif-
ferent points in time.

First, we evaluate the attacker’s success with respect
to a varying number of PCA dimensions. Fig. 2(a) de-
picts the minimum, average and maximum success rate
of an attacker when identifying the samples between dif-
ferent points in time, irrespective of the time period be-
tween them. The maximum success rate for the identifi-
cation attack is 42% and is achieved for 25 and 39 PCA
dimensions. The usage of 22 PCA dimensions yields the
highest average success rate, of 22%. The highest min-
imal success rate in the dataset is achieved for 17 PCA
dimensions (12%).

These results are similar to what we obtained in our
experiments for the athletes dataset: The best results are
achieved for a number of PCA dimensions around 20 in
both datasets. The highest average success rate lies 6
points below the best success rate for the athletes dataset.
This could be explained by longer time periods in this
dataset. However, for some time periods, we can achieve
one and a half the success rate of the first dataset. When
comparing the top 10 miRNAs contributing to the first
PCA dimension in this dataset and in the athletes’ plasma
dataset, we also find an overlap of 80% between these
miRNAs. This indicates that approximately the same set
of miRNAs can be used to differentiate plasma expres-
sion profiles between individuals in both datasets. Thus,
we can conclude that, while miRNA expression levels are
directly linked to health status, the health status only af-
fects a subset of the miRNAs, which has only little effect
on the temporal linking.

To further investigate the effect of different time peri-
ods on the attacker’s success, we plot the maximum suc-
cess rates between all possible, ascending combinations
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Figure 4: Success rate of the matching attack for the lung cancer dataset. (a) Success rate aggregated over all matchings
between any t1 and t2 plotted against the number of PCA dimensions (in {1, ...,60}). (b) Success rate of matching the
miRNA profiles between time pairs t1 (various curves), t2 (x-axis value). (c) Success rate plotted against the distance
between t1 and t2.

of points in time in Fig. 2(b). With only a few excep-
tions, the best success rates are most often achieved for
consecutive time points. The only two exceptions are
found for t1=before the surgery and t1=the sixth month
after the surgery. In general, however, we notice a ten-
dency of slight decrease in success over an increasing
time period.

In order to verify this finding, we group the results
by the period between t1 and t2 (Fig. 2(c)). Note that,
since we do not know the time period between before
the surgery and after it, we leave out all results that
use samples collected before the surgery. Clearly, the
best achievable success rate drops for increasing time
periods.This decrease over larger periods of time can
partially explain the lower average success rate in this
dataset compared to the athletes’ dataset (considering a
much smaller time period).

Next, we computed the guessing entropy [14, 41] for
the identification attack. The guessing entropy E[G(X)]
is the expected number of guesses an adversary would
need to identify the correct sample at a different point
in time. For the identification attack it is given by
E[G(X)] = ∑

n
i=1 i ·Pr[X = i], where X denotes a the rank

of the correct sample at time t2 and Pr[X = i] denotes the
empirical probability that the correct sample is ranked at
the ith position.

For blood-based samples of our athletes dataset, the at-
tack can achieve a guessing entropy just below 4, clearly
outperforming random guesses, which would yield an
entropy of 15 guesses on average. For plasma-based
samples of the same dataset, the attack yields an entropy
of approximately 9 guesses. This result is consistent with
the results on the lung cancer dataset, where, on average,
an adversary would need just fewer than 9 guesses (com-
pared to a guessing entropy of 13.5 for random guesses).
Moreover, for some t1 and t2, the attack is even able to
achieve a guessing entropy smaller than 6.

5.2.2 Matching Attack

We evaluate here the success of the adversary, who tries
to link all participants over time, again for the three
aforementioned longitudinal datasets. Starting with the
athletes’ datasets, we compare the success rate of match-
ing the blood and the plasma over all possible PCA di-
mensions for 29 participants. In Fig. 3(a), we notice the
same behavior as in the identification attack: the blood
based miRNA expression levels are much easier to link
over time than the plasma based levels. We even reach a
higher maximum absolute success rate than in the iden-
tification attack: 90% with 39 or 40 PCA dimensions for
the blood and 48% success with 34 PCA dimensions for
the plasma samples.

The identification attack’s lower success rate is due to
the fact that it is evaluated for each sample individually,
thus allowing multiple samples at t1 to be linked to the
same (potentially wrong) sample at t2. Since our per-
fect matching attack rules out those cases by forcing each
profile at t2 to be matched to exactly one profile from t1, it
also decreases the number of wrongly matched samples.

Next, we also analyze the success of the attack with
respect to the number of participants to be matched to-
gether. Intuitively, the more miRNA profiles there are,
the more challenging it should be for the adversary to
match them at different time points. Again, we make
the number of participants n vary between 2 and 29 at
both time points, again randomly sampling 1000 combi-
nations (or fewer, if there are fewer than 1000 combina-
tions) and averaging the result. Fig. 3(b) shows the ex-
pected trend of decreasing success for the blood miRNA
samples. The plasma scenario monotonically decreases
between 2 and 25 participants and then slightly increases
until 29. This artifact could be explained by the smaller
number of random combinations, and thus experiments,
when n > 26. We also find that the blood attack faces
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a rather linear decrease in success whereas the plasma
success rate decreases much faster. By extrapolating
this linear trend, we can expect a success rate as high
as 60% with 120 participants in the datasets. Therefore,
we again conclude that the blood has miRNA expression
levels that enable much easier tracking over time than the
plasma, which is consistent with the results of the identi-
fication attack.

Fig. 3(c) investigates how the attack’s success evolves
when revealing only a subset of the miRNA expression
levels. We gradually drop individual miRNAs in ran-
dom order and compute the attack’s success. The fig-
ure shows the success rate (for each possible number
m ∈ {1189,1188, . . . ,2,1} of miRNAs) averaged over
50 randomly chosen orderings of miRNAs. We notice
that the attack’s success is very stable, especially for
the blood samples, from 1189 to 200 miRNAs. For the
blood, the success decreases below 80% the first time
when there are fewer than 100 miRNAs available to the
adversary. We further study the implications of this ro-
bustness in the context of our countermeasures in Sec-
tion 6.

We also made use of our third longitudinal dataset con-
taining plasma miRNA expression profiles of 26 individ-
uals over up to eight different time points (cf. Section
4). In Fig. 4(a), we see that the average success rate
reaches its maximum at a number of PCA dimensions
very close to the number of dimensions for the athletes
dataset, i.e., 34. However, this maximum is approxi-
mately 30%, which is smaller than the 48% reached for
the first dataset. A greater period between time points
could explain this behavior, and we also see that we can
still reach a maximum success rate of 55% between some
time points, with 39 PCA dimensions. We explore the
time effect in deeper details in the following figures.

Fig. 4(b) depicts the maximum success rate between
any pair of time points t1, t2. For instance, the solid red
line shows the success rates between t1=before surgery
and all others. It is difficult to detect any trend with re-
spect to the time period in the different curves, except a
slight decrease when the time period is higher or equal
to 15 months. This is confirmed by Fig. 4(c) that depicts
the maximum, average, and minimum success rate with
respect to the period between t1 and t2. We clearly notice
a decreasing rate between 3 and 9 months, an increase to
12 months, and finally clear decrease towards 15 and 18
months.

6 Countermeasures

In this section, we propose and evaluate two main de-
fense mechanisms for preventing miRNA expression
data from being tracked over time. The proposed tech-
niques are based on well-established privacy-enhancing

methods, previously applied in other privacy contexts,
such as location privacy. The first approach relies on a
quite straightforward technique: release only a subset of
the miRNAs. We can already see from Fig. 3(c) of Sec-
tion 5 that the matching attack is quite robust to a de-
crease in the number of miRNAs. Nevertheless, we show
hereafter how we can keep a high utility in combination
with unlinkability of expression profiles over time by re-
vealing a small subset of miRNAs. The second counter-
measure consists in adding noise to the released miRNA
expression vectors, independently for every individual.
This method shows very promising results, reaching an
even better privacy-utility trade-off than the hiding mech-
anism. Furthermore, we also investigate the effect of cor-
relations between miRNA expression levels and present
the privacy evolution when the adversary can infer miss-
ing miRNAs by using these correlations.

For evaluating the privacy provided by our defense
mechanisms, we focus on the matching attack against
blood-based miRNAs, as this constitutes the worst-case
attack from a privacy perspective, as shown in Section 5.
Moreover, we assume the attacker is able to select the
number of PCA dimensions that maximizes his success.
This provides us with a conservative measure of privacy,
showing the worst-case privacy levels individuals can ex-
pect.

6.1 Baseline Utility

Before presenting the proposed countermeasures and
their efficiencies, we must carefully define the context
in which they should apply. Indeed, we can rarely have
both perfect privacy and maximum utility, so that we of-
ten need a trade-off between these two. Therefore, the ef-
ficiency of the defense mechanism cannot only be judged
based on the privacy metric, but must also relate to the
utility brought in the context in which the data is used.

According to biomedical experts, miRNA expres-
sion profiles have strong potential to help predict var-
ious severe diseases, from cancer to Alzheimer’s dis-
ease. Biomedical researchers typically rely on stan-
dard machine learning algorithms to identify which
miRNAs are playing a significant role in the disease
of interest. They are dealing with binary classifica-
tion, between cases (carrying the disease) and controls
(healthy), and most often rely on support vector ma-
chines (SVMs). In particular, they typically use radial
basis function SVMs and select a subset of features by
subsequently adding miRNAs in order of their signifi-
cance values (e.g., p-values computed by the Wilcoxon-
Mann-Whitney (WMW) test) [37] or equivalently in or-
der of their area under the ROC curve (AUC). Given sam-
ples of cases and controls, the accuracy is then defined as
the number of correctly classified samples divided by the
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Disease Maximum
accuracy with

the best
subset of
expressed

miRNAs (#
miRNAs)

Accu-
racy

with all
ex-

pressed
miRNAs

Periodontitis 0.941 (37) 0.88
Renal cancer 0.988 (32) 0.962
Wilms’ tumor 0.95 (150) 0.937
Benign prostate hy-
perplasia

0.921 (105) 0.883

Chronic obstructive
pulmonary disease

0.932 (70) 0.886

Colon cancer 1.0 (30) 0.997
Ductal carcinoma 0.938 (55) 0.92
Glioma 0.927 (19) 0.83
Lung cancer 0.899 (60) 0.848
Melanoma 0.996 (185) 0.992
Multiple sclerosis 0.992 (40) 0.979
Myocardial infarc-
tion

0.893 (400) 0.884

Nonischaemic sys-
tolic heart failure

0.9 (135) 0.871

Ovarian cancer 0.919 (18) 0.876
Pancreatitis 0.941 (130) 0.899
Prostate cancer 0.923 (90) 0.91
Psoriasis 0.914 (350) 0.902
Sarcoidosis 0.977 (200) 0.97
Tumor of stomach 0.969 (160) 0.89

Table 1: Accuracy of the SVM algorithm in classifying
individuals between cases (carrying the disease) and con-
trols (healthy), for 19 diseases, without countermeasure.

total number of samples. Note that we compute the aver-
age accuracy over a repeated k-fold cross-validation.

In this work, we define the utility as the accuracy of
the SVM classifier, as defined above. We use a 10-fold
cross-validation with 5 repeats (using R and the caret8

library) and determine the miRNAs’ p-values by using
the WMW test and adjusting the significance values for
multiple tests using the Benjamini-Hochberg adjustment.
The WMW test statistic is applied for each miRNA indi-
vidually in order to test whether this miRNA has similar
expressions between cases and controls (null hypothe-
sis). The p-values then provide us with the relevance of
the miRNA to the disease of interest. In contrast to the
t-test, the WMW test can be applied on unknown dis-
tributions. This way, we follow the standard procedure
of biomedical research. Table 1 shows the accuracy of

8caret.r-forge.r-project.org

our SVM algorithm applied on our 1000+ participants
dataset to predict 19 diseases, without any obfuscation.
The maximum accuracy here is what we refer to as the
baseline utility in the subsequent subsections.

Note that, before running the SVM algorithm, we fil-
ter out non-expressed miRNAs, i.e., those with a median
level of expression smaller than 50 over the 1000+ indi-
viduals, which leaves us with 446 expressed miRNAs.

6.2 Hiding MicroRNA Expressions

The first countermeasure that we study is miRNA ex-
pression hiding. This obfuscation technique has the ad-
vantage to be non-pertubative, i.e., to preserve the cor-
rect values of all revealed miRNA expressions. How-
ever, as we have seen in Section 5, the attacks are ex-
tremely robust to removal of miRNAs. In the following,
we want to find an optimal trade-off between the diagno-
sis accuracy, i.e., the utility, and the unlinkability of the
data, i.e., the privacy. To this end, we make use of both
our blood-based datasets, the 1000+ dataset with blood-
based miRNA expressions to run our SVM algorithm and
the athletes’ dataset with blood-based miRNAs to evalu-
ate the level of privacy. Note that we filter both datasets’
miRNAs in order to have the same set of 446 miRNAs
in both cases. While we measure the utility in terms of
accuracy of the SVM, the privacy is measured in terms of
the maximum achievable success rate (over all possible
PCA dimensions) of our matching attack.

Figure 5 shows the evolution of privacy and utility for
a range of 1 to 100 disclosed miRNAs, for 6 different se-
vere diseases.9 We focus on this range of miRNAs as:
(i) for more than 100 miRNAs, the attack’s success rate
is approximately the same as the one without counter-
measure, and (ii) the SVM can already achieve very high
accuracy with up to 100 miRNAs. We gradually reveal
the miRNAs in decreasing order of significance (based
on p-values), as computed in Subsection 6.1.

Figure 5 demonstrates that there exists a trade-off be-
tween the utility of miRNA expressions and the privacy
of the contributors’ data. Note that we also depict the
relative decrease in accuracy compared to the maximum
SVM accuracy computed in Subsection 6.1 and the rela-
tive decrease in the attack’s success (increase in privacy)
compared to the attack’s success with all miRNAs, i.e.,
90%. We see that the relative decrease in accuracy is al-
most always smaller than 10%. The only exceptions to
this are with pancreatitis and melanoma, for fewer than
3 disclosed miRNAs. Moreover, regarding the privacy,
the figures show that we can never reduce the attack’s
success by more than 50% when revealing more than 20

9These are representative of the behavior of all 19 diseases we tested
our privacy-preserving mechanisms on.

9

caret.r-forge.r-project.org


20 40 60 80 100
Number of used miRNAs

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
. 
o
f 

co
rr

e
ct

 m
a
tc

h
in

g
 /

 A
cc

u
ra

cy
 o

f 
S
V

M
Pancreatitis

Matching attack
Accuracy of SVM
Rel. decrease success
Rel. decrease accuracy

0

20

40

60

80

100

R
e
la

ti
v
e
 d

e
cr

e
a
se

 i
n
 s

u
cc

e
ss

 /
 a

cc
u
ra

cy
 (

in
 %

)

(a)

20 40 60 80 100
Number of used miRNAs

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
. 
o
f 

co
rr

e
ct

 m
a
tc

h
in

g
 /

 A
cc

u
ra

cy
 o

f 
S
V

M

Glioma

Matching attack
Accuracy of SVM
Rel. decrease success
Rel. decrease accuracy

0

20

40

60

80

100

R
e
la

ti
v
e
 d

e
cr

e
a
se

 i
n
 s

u
cc

e
ss

 /
 a

cc
u
ra

cy
 (

in
 %

)

(b)

20 40 60 80 100
Number of used miRNAs

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
. 
o
f 

co
rr

e
ct

 m
a
tc

h
in

g
 /

 A
cc

u
ra

cy
 o

f 
S
V

M

Multiple sclerosis

Matching attack
Accuracy of SVM
Rel. decrease success
Rel. decrease accuracy

0

20

40

60

80

100

R
e
la

ti
v
e
 d

e
cr

e
a
se

 i
n
 s

u
cc

e
ss

 /
 a

cc
u
ra

cy
 (

in
 %

)

(c)

20 40 60 80 100
Number of used miRNAs

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
. 
o
f 

co
rr

e
ct

 m
a
tc

h
in

g
 /

 A
cc

u
ra

cy
 o

f 
S
V

M

Tumor of stomach

Matching attack
Accuracy of SVM
Rel. decrease success
Rel. decrease accuracy

0

20

40

60

80

100

R
e
la

ti
v
e
 d

e
cr

e
a
se

 i
n
 s

u
cc

e
ss

 /
 a

cc
u
ra

cy
 (

in
 %

)

(d)

20 40 60 80 100
Number of used miRNAs

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
. 
o
f 

co
rr

e
ct

 m
a
tc

h
in

g
 /

 A
cc

u
ra

cy
 o

f 
S
V

M

Melanoma

Matching attack
Accuracy of SVM
Rel. decrease success
Rel. decrease accuracy

0

20

40

60

80

100

R
e
la

ti
v
e
 d

e
cr

e
a
se

 i
n
 s

u
cc

e
ss

 /
 a

cc
u
ra

cy
 (

in
 %

)

(e)

20 40 60 80 100
Number of used miRNAs

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
. 
o
f 

co
rr

e
ct

 m
a
tc

h
in

g
 /

 A
cc

u
ra

cy
 o

f 
S
V

M

Renal cancer

Matching attack
Accuracy of SVM
Rel. decrease success
Rel. decrease accuracy

0

20

40

60

80

100

R
e
la

ti
v
e
 d

e
cr

e
a
se

 i
n
 s

u
cc

e
ss

 /
 a

cc
u
ra

cy
 (

in
 %

)

(f)

Figure 5: Evolution of privacy (unlinkability) and utility (classifier accuracy) plotted against the number of released
miRNAs for the following diseases: (a) Pancreatitis, (b) Glioma, (c) Multiple sclerosis, (d) Tumor of stomach, (e)
Melanoma, (f) Renal cancer. The relative decrease success curve refers to the decrease in success of the matching
attack compared to the success without countermeasure. Similarly, the relative decrease accuracy curve refers to the
decrease in accuracy of the SVM classifier with respect to the case without protection mechanism.

miRNAs. Nevertheless, within the range of 3 to 20 dis-
closed miRNAs, we can find, for all diseases, a satisfac-
tory trade-off between utility and privacy.

In particular, for glioma, we can decrease the linka-
bility attack’s success and thus improve the privacy by
80.8% when using 4 miRNAs, while reducing the clas-
sification accuracy by only 1.1%. Similarly for multiple
sclerosis, 7 miRNAs provide an increase in privacy of
53.8%, while the decrease in accuracy only amounts to
0.9%. For renal cancer and 10 miRNAs, we are able to
achieve an improvement in privacy of 69.2% and a de-
crease of accuracy of only 1.7%. There are only two
diseases for which it is very difficult to have both unlink-
ability and very high utility: melanoma and pancreati-
tis. For melanoma, we notice that the matching attack’s
success has a fast increase with very few miRNAs, and
already exceeds 50% starting with only 7 miRNAs. For
pancreatitis, the SVM’s accuracy is relatively low (com-
pared to the maximum) for the first 20 miRNAs. Thus
for both diseases, either privacy or utility would have to
be slightly sacrificed for the other.

MiRNA co-expression. Like between variants in the
genome, there exist correlations between miRNA expres-
sions: around 40% of miRNAs are not independently ex-
pressed [7]. This means that the adversary, by knowing
these correlations, could increase his knowledge about
the non-disclosed miRNA expressions. In order to eval-
uate the importance of such correlations, we first com-
pute the Pearson’s correlation coefficients, and their cor-
responding p-values, in all 99,235 pairs of the 446 ex-
pressed miRNAs in our fourth dataset. Filtering out all
correlations with p-values greater than 0.001 (after Bon-
ferroni correction for multiple correlations’ testing) or
correlation coefficient smaller than 0.5 leaves us with
47% of miRNAs not independently expressed. Figure 6
shows the updates of the linkability attack’s success by
taking into account all significant correlations as defined
above. In our experiments, we take a quite conservative
approach: We assume that the adversary can perfectly in-
fer the miRNAs correlated with those that are gradually
disclosed. The dotted curve provides an upper bound es-
timate on the success rate. A tighter bound could be de-
rived by knowing more precisely the probabilistic depen-
dencies between miRNAs. This is left for future work.
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Figure 6: Correlations between miRNAs. Evolution of privacy and utility, when miRNAs correlated with the revealed
miRNAs are taken into account for the attack. This provides an upper bound on the best linkability of miRNA
expression profiles, i.e., worst-case privacy level. (a) Glioma, (b) Multiple sclerosis, (c) Renal cancer.

For Fig. 6, we make use of the three diseases of Fig-
ure 5 that gave best trade-off between privacy and util-
ity, i.e., glioma, multiple sclerosis and renal cancer. We
observe that the success rate knowing miRNAs corre-
lated with disclosed miRNAs is much higher than with-
out them, except for the very first miRNAs in Fig. 6(c).
It shows that the most significant miRNAs for the SVM
classification are co-expressed with others, which penal-
izes privacy significantly. Making use of the best subsets
of miRNAs found above without correlations, contain-
ing 4 miRNAs for glioma, 7 for multiple sclerosis, and
10 for renal cancer, we evaluate the new privacy levels
when miRNA correlations are taken into account. For
glioma, instead of improving unlinkability by 80.8%, the
4 miRNAs and their correlated miRNAs yields an im-
provement in privacy of 34.6%. For renal cancers, the
privacy enhancement drops from 69.2% to 38.5% and,
for multiple sclerosis, knowing 7 miRNAs and their co-
expressed miRNAs yield an attack’s success rate almost
equal to the highest rate with the full set of miRNAs.
However, we can find new, better trade-offs: e.g., dis-
closing 5 miRNAs for multiple sclerosis still provides the
same high SVM accuracy (decrease of 0.9% compared to
the baseline) while reducing the attack’s success by 23%.
Note that we do not make use of the correlated miRNAs
for the SVM algorithm as we are not certain about how
they correlate with the disclosed ones.

6.3 Noise Mechanism

As we have noticed in the first protection mechanism,
it is possible to hide the vast majority of miRNAs
while retaining a fair level of prediction accuracy. This
is typically very useful in the clinical setting where
medical practitioners already know the miRNAs to test
for predicting a specific disease. However, such a
privacy-preserving mechanism could dramatically jeop-

ardize miRNA utility for biomedical research. Indeed, as
we have seen in our previous experiments, the majority
of miRNAs need to be masked in order to gain a signifi-
cant amount of unlinkability, which is not possible if re-
searchers want to test for associations between miRNAs
and diseases. Therefore, we additionally present and
study a countermeasure where contributors of miRNA
expressions directly apply random noise to their vec-
tors of expression levels before providing them to the re-
search community (possibly online), in a fully distributed
manner (i.e., independently of other contributors).

The idea behind adding noise to the raw expression
data is to provide indistinguishability between different
expression vectors and consequently reduce the track-
ing capabilities of the adversary. Following the gener-
alized notion of differential privacy [15] previously ap-
plied to location privacy [10], we state that a mechanism
K achieves epigeno-indistinguishability if and only if, for
all m-miRNA expression vectors r1, r2,

Pr(K(r1) ∈S )≤ exp(εd2(r1,r2))×Pr(K(r2) ∈S ),

where S is any subset of the set of possible responses
and d2(·, ·) denotes the Euclidean distance. In the follow-
ing, we assume the set of possible responses lies in the
same m-dimensional real-valued space Rm as the set of
original expression vectors. Before defining our mecha-
nism K(·) for achieving epigeno-indistinguishability, let
us first give some intuition about the mechanism. The
noise mechanism is such that the probability of report-
ing a noisy expression vector K(r) differs by at most a
factor exp(εd2(r1,r2)) when the actual, non-obfuscated
miRNA expression vectors are r1 and r2. This can be
achieved by relying on the multivariate Laplacian mech-
anism that adds noise x according to the following prob-
ability density function g(x) = 1

α
e−ε‖x‖2 , where α is a

normalization factor ensuring that the integral over all
x ∈ Rm equals one.
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Sampling noise from the distribution g(x) can be car-
ried out efficiently by generalizing the method used for
the planar Laplacian mechanism in [10]. First, we sam-
ple the magnitude ‖x‖2 of the noise from a gamma dis-
tribution with shape m and scale 1/ε . Second, we ran-
domly generate the direction x̂ = x/‖x‖2 of the noise by
uniformly sampling points on the surface Sm−1 of a hy-
persphere [36]. To do so, we can generate m indepen-
dent Gaussian random variables y1, y2, ..., ym, and let

ŷi = yi/
√

y2
1 + . . .+ y2

m for i = 1, ...,m. Then the distri-
bution of the vector ŷ = (ŷ1, ..., ŷm) is uniform over the
surface Sm−1, and thus we can set the direction x̂ := ŷ.
Each person i contributing his miRNA expression profile
ri will then share, instead of the actual expression data,
the noisy vector K(ri) = ri+x, where x is independently
generated for all participants i = 1, ...,n.

Following this approach, in our evaluation, we first
add noise to our dataset of 1000+ individuals (consider-
ing only the 446 miRNAs as before). Then, in the second
step, we calculate the p-values on the noised data (since
the researchers would be provided with exactly this data)
and train the SVM the same way as in the previous sub-
sections by subsequently adding miRNAs in the order
of their p-values. Similarly, we evaluate the success of
our attack on the athletes’ dataset, when considering the
same 446 miRNAs, but after adding noise. Moreover,
we repeat both our experiments 50 times and average the
results over all runs.

Figure 7 shows the evolution of the SVM accuracy
and linkability (success of the attack), with respect to the
amount of noise, tuned by ε , that is added to each con-
tributor’s miRNA expression profile. As privacy is mea-
sured on the same dataset for all six figures, its evolves
in a very similar way. Even if the noise is randomly gen-
erated, the differences average out with the Monte Carlo
method we use. We clearly see that with ε = 1, there
is almost no privacy gain compared to the attack with-
out countermeasure, whereas for ε = 0.001, the attack’s
success drops by almost 90%. Of course, as for the first
countermeasure, there is a utility-privacy trade-off to be
found between these two extreme values.

In Figure 7(a), we can observe that, for pancreatitis,
ε = 0.075 is a good trade-off, with an accuracy decrease
of only 0.8% and an unlinkability improvement of 40%.
For glioma (Figure 7(b)), the best trade-off is certainly at
ε = 0.05, with an accuracy decrease of 1.2% and an un-
linkability improvement of 51%. For multiple sclerosis,
we reach the best trade-off at ε = 0.025 with an accuracy
decrease of 0.65% and an unlinkability improvement of
63%. For tumor of stomach, we can reach an accuracy
decrease of only 0.2% and still improve the unlinkability
by as much as 70% with ε = 0.01. For renal cancer, we
have to sacrifice a bit more of utility, 2.3%, for a privacy

increase of 61%, with ε = 0.025. The only disease for
which it is quite difficult to get both satisfactory unlinka-
bility and excellent accuracy is melanoma (Figure 7(e)).
This is consistent with the hiding mechanism presented
in Subsection 6.2, where we observed (in Figure 5(e)) a
fast and sharp increase in the linkability attack’s success.

6.4 Comparison of Protection Mechanisms

In order to compare both approaches, we decide upon a
utility or a privacy requirement, fix it, and then evaluate
the best privacy, respectively utility, achieved with both
countermeasures. We carry out this evaluation on all 19
diseases for different requirements of utility and privacy.

First, we start by fixing the utility, more precisely the
relative accuracy decrease compared to the baseline ac-
curacy. The privacy is measured in terms of the decrease
in the matching attack’s success. For a given maximal
decrease in accuracy ∆max

acc , we select the optimal number
of miRNAs m∗ and the optimal amount of noise ε∗ that
maximize the privacy increase ∆m

priv and ∆ε
priv. In case

of the hiding mechanism, we select m∗ = argmaxm ∆m
priv

such that ∆m
acc < ∆max

acc . In case of the noise mechanism,
we select ε∗ = argmaxε ∆ε

priv such that ∆ε
acc < ∆max

acc , re-
spectively.

Considering ∆max
acc ∈ {0.5%,1%,2%,3%,4%,5%} for

all 19 diseases, we mostly experience that the noise
mechanism provides a better privacy improvement com-
pared to hiding a subset of miRNAs (all results are in
Table 2 in the appendix). In particular, 90 out of 114
cases (combinations of disease and ∆max

acc ) yield a bet-
ter privacy with the noise mechanism. When examin-
ing a maximal decrease in accuracy of 2%, the hiding
technique provides a better privacy for only 2 diseases,
namely glioma and renal cancer. Interestingly, these two
diseases stand out also for other values of the maximal
accuracy decrease, providing better privacy with the hid-
ing technique in 10 out of 12 cases. However, for all
other diseases, adding noise in a distributed manner to
individual expression profiles provides better utility for
similar levels of privacy. For example, for lung cancer,
we are able to achieve an increase in privacy of 79.3%
while maintaining a decrease in accuracy of 0.8% us-
ing noise with ε = 0.005. The best we can achieve for
the hiding technique here is either a decrease in accu-
racy of 0.97% and an increase in privacy of only 46.2%
or a larger decrease in accuracy of 1.9% and a privacy
improvement of only 50%.

Next, we discuss the results for a fixed minimal im-
provement of the privacy and compare the correspond-
ing minimal decrease in accuracy in both countermea-
sures. We now fix the minimal increase in privacy (i.e.,
the minimal decrease in the attack’s success) ∆min

priv and
minimize the decrease in accuracy: argminm ∆m

acc such
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Figure 7: Evolution of privacy and utility (classifier accuracy) plotted against the noise (tuned by ε) added to the
individual miRNA expression profiles, for the following diseases: (a) Pancreatitis, (b) Glioma, (c) Multiple sclerosis,
(d) Tumor of stomach, (e) Melanoma, (f) Renal cancer.

that ∆m
priv > ∆min

priv and argminε ∆ε
acc such that ∆ε

priv > ∆min
priv,

respectively. We run experiments for values of ∆min
priv from

10% up to 90%, in steps of 10% (all results are provided
in Table 3 in the appendix).

We again observe that, for most of the evaluated cases,
the achieved accuracy is better when adding noise than
when hiding miRNAs. In particular, this holds true for
143 out of 171 cases, clear exceptions being again glioma
and renal cancer. For those two diseases, the hiding tech-
nique provides better accuracy than the noise mechanism
in 87.5% of the cases. When fixing the minimal increase
in privacy to 70%, only these two diseases provide better
results with the hiding technique. For instance, with re-
nal cancer, we achieve 60.8% improvement in privacy
with a decrease in accuracy of 2.3% using noise with
ε = 0.025, whereas we can obtain an increase in privacy
of 69.2% and a decrease in accuracy of only 1.7% when
using the hiding technique. For the majority of diseases,
however, it is clearly the noise mechanism that provides
much higher utility. For example, for lung cancer, an
increase in privacy of at least 70% is achievable with a
decrease in accuracy of only 0.2% with the noise mech-
anism, while the hiding technique yields a decrease in
accuracy of 11.2%.

In summary, we find that the noise mecha-

nism presented in Section 6.3, providing epigeno-
indistinguishability, is able to achieve a better privacy-
utility trade-off than the hiding mechanism for the vast
majority of studied diseases (17 out of 19). We have also
shown in Section 6.2 that the privacy improvement with
the hiding mechanism could actually be too optimistic
due to the correlations existing between miRNAs. This
is another argument to favor the noise mechanism rather
than the hiding technique. Moreover, the p-values used
to rank the miRNAs in the hiding mechanism actually re-
quire that, at some point in time, some entity, gets access
to the full set of miRNAs of a significant number of in-
dividuals in order to measure these p-values. The noise
mechanism is fully distributed and does not need to rely
on a trusted entity at any point in time. Finally, it allows
for more flexibility as it enables, e.g., the biomedical re-
search community to access all miRNA expression levels
of contributors.

7 Related Work

We start with the literature highlighting new privacy is-
sues stemming from various types of biomedical data.
Schadt et al. have shown that RNA expression data could
be used to accurately predict genotypes [48]. The au-
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thors present a Bayesian framework that relies on the
association existing between expression levels of thou-
sands of genes and genomic variations called expression
quantitative trait loci (eQTLs). In the same vein, Philib-
ert et al. demonstrate how methylation array data can
be used to construct individually identifying genetic pro-
files, and to infer substance-use histories, such as alcohol
or smoking [45]. Dyke et al. also study privacy risks re-
lated to methylation data, and discuss various methods to
balance data open-access and (epi)genomic privacy [18].
Franzosa et al. evaluate how different samples of hu-
man microbiomes can be linked over time [23]. Their
results show that more than 80% of individuals can still
be uniquely identified one year later. Fierer et al. had al-
ready provided some evidence on the feasibility of link-
ing skin bacterial communities back in 2010, but with
very few individuals [22].

There has been quite a lot of work on determining
membership of individuals in datasets, which is different
from linking them over time among different datasets.
Also, these previous works focus on genomic data only.
Specifically, the attack aims to identify a victim’s par-
ticipation in a genome-wide association study (GWAS)
based on aggregate statistics on the GWAS dataset,
knowing the victim’s genome (or part of it). Homer et al.
are the first to thoroughly assess the feasibility and ro-
bustness of such an attack by relying upon statistics such
as allele frequency or genotype counts [27]. Wang et al.
extend the initial attack by making use of the correlations
among the different positions in the genome [52]. Their
attack proves to be effective with the statistics related to
only a few hundreds genetic variants. Im et al. show that,
if the victim’s phenotype is rather extreme or if multiple
phenotypes are available, regression coefficients can re-
veal the victim’s participation in a genome-wide associ-
ation study as much as allele frequencies [31]. Dwork
et al. have very recently demonstrated the robustness of
such an attack on distorted summary statistics [17].

On the protection side, various papers have studied
how to apply noise to summary statistics to protect the
privacy of GWAS participants. Johnson and Shmatikov
design and implement algorithms for accurate and dif-
ferentially private computation of various statistics of in-
terest, such as the location of the most significant ge-
nomic variants, or the p-values of statistical tests be-
tween a given variant and the associated diseases [32].
Uhler et al. have also proposed to rely upon differential
privacy for sharing GWAS results privately. In [51], they
present methods for privately disclosing allele frequen-
cies, chi-square statistics, and p-values. In [54], Yu et
al. extend these methods by allowing for arbitrary num-
ber of cases and controls, assess their performance and
compare it with the mechanism proposed by Johnson and
Shmatikov. In [55], Yu et al. present a differentially-

private mechanism for logistic regression and show how
it can be applied to the analysis of GWAS data. In
the pharmacogenetic context, Fredrikson et al. show
that differential privacy mechanisms can induce bad war-
farin dosing, thus expose patients to increased risk of
stroke, bleeding events, and mortality [24]. Tramèr et
al. [50] investigate how a relaxation of differential pri-
vacy that considers more reasonable amounts of back-
ground knowledge can help reach a better privacy-utility
trade-off for releasing differentially private chi-square
statistics in GWAS.

Our work differs from these in the sense that one of
our protection mechanisms directly applies noise on the
raw miRNA data to guarantee a certain degree of indis-
tinguishability between them, instead of adding noise to
summary statistics to ensure differential privacy. Our
second defense technique relies on sharing a subset of
miRNA data, which is closer to what Humbert et al. have
developed in the genomic-privacy context. In particular,
they propose an optimization algorithm that enables to
share raw genomic variants (rather than summary statis-
tics), e.g., for research, satisfying the genomic privacy re-
quirements of all individuals in a family [29]. More gen-
erally, our work aims to protect real-valued miRNA ex-
pression vectors, which vary over time much more than
DNA data.

8 Conclusion

To the best of our knowledge, this work is the very first
to demonstrate that personal miRNA expression profiles
can be successfully tracked over time. Our study sheds
light on a widely overlooked problem, namely privacy
risks stemming from epigenetic data, and brings this is-
sue to the attention of both the biomedical and computer
security research communities. In addition to the in-
depth evaluation of the temporal linkability of miRNA
expression profiles, we propose two defense mechanisms
based on well-established privacy-enhancing methods:
(i) hiding a subset of the expression data, and (ii) adding
noise to the released expression profiles. We thoroughly
evaluate the impact of these countermeasures on biomed-
ical utility by studying how much accuracy decrease they
induce in a typical machine-learning algorithm for pre-
dicting diseases. We observe that, for the majority of the
19 diseases studied in our experiments, the noise mech-
anism provides a better privacy-utility trade-off than the
hiding method. Moreover, we highlight that the noise
mechanism can be applied directly by the data contribu-
tors, independently of other contributors, and provides
more flexibility for the biomedical community. Our
work demonstrates that achieving indistinguishability by
adding noise is a promising technique that could be ap-
plied to other types of biomedical data in the future.
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Our results provide enough evidence about the extent
of the threat to remove miRNA expression data from
publicly accessible databases. Due to the limited num-
ber of individuals present in our datasets, we could not
rely on supervised learning algorithms, which would cer-
tainly further improve the tracking capabilities of the ad-
versary. We hope that this work will lead to further re-
search on better understanding and protecting the privacy
of miRNA expression data. Considering larger databases
or uncertain membership of participants in the targeted
databases are other promising directions for follow-up
work.
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A Appendix

A.1 Human Subjects and Ethical Consid-
erations

The studies have received an approval from our institu-
tional ethics review board. Moreover, not only have all
datasets been stored and analyzed in anonymized form,
but we also handled our results with great care to not
deanonymize any of the patients. This way, we ensured
that all participants were treated equally and with re-
spect.
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∆max
acc 0.5% 1.0% 2.0% 3.0% 4.0% 5.0%

Disease ∆m
priv ∆ε

priv ∆m
priv ∆ε

priv ∆m
priv ∆ε

priv ∆m
priv ∆ε

priv ∆m
priv ∆ε

priv ∆m
priv ∆ε

priv

Periodontitis 26.9% 74.1% 26.9% 79.2% 50.0% 79.2% 88.5% 83.6% 88.5% 83.6% 88.5% 83.6%
Renal cancer 30.8% - 30.8% 3.6% 69.2% 5.2% 73.1% 60.8% 73.1% 72.7% 80.8% 78.8%
Wilms tumor 3.8% 6.4% 7.7% 9.5% 7.7% 40.1% 7.7% 61.5% 7.7% 70.4% 11.5% 74.3%
Benign
prostate
hyperplasia

−3.8% 10.6% 3.8% 70.5% 11.5% 72.2% 46.2% 79.2% 57.7% 79.2% 65.4% 79.2%

Chronic ob-
structive pul-
monary dis-
ease (COPD)

0.0% 2.7% 0.0% 5.5% 0.0% 12.5% 0.0% 12.5% 15.4% 50.3% 23.1% 69.8%

Colon cancer 19.2% 11.4% 30.8% 30.5% 30.8% 60.2% 57.7% 60.2% 73.1% 70.5% 73.1% 73.8%
Ductal ade-
nocarcinoma

0.0% 50.6% 3.8% 50.6% 7.7% 62.5% 42.3% 62.5% 50.0% 69.5% 50.0% 74.2%

Glioma 65.4% 5.2% 65.4% 5.2% 80.8% 68.5% 80.8% 80.8% 80.8% 87.5% 80.8% 87.5%
Lung cancer 11.5% 74.1% 46.2% 79.3% 50.0% 79.3% 50.0% 79.3% 50.0% 79.3% 50.0% 79.3%
Melanoma 0.0% - 0.0% 3.8% 0.0% 5.9% 3.8% 10.3% 38.5% 40.2% 38.5% 60.7%
Multiple
sclerosis

19.2% 49.5% 53.8% 62.6% 53.8% 62.6% 61.5% 62.6% 61.5% 73.7% 61.5% 73.7%

Myocardial
infarction

3.8% 52.4% 3.8% 52.4% 3.8% 60.5% 38.5% 60.5% 42.3% 74.6% 42.3% 74.6%

Non-
ischaemic
systolic heart
failure

−3.8% 80.0% 0.0% 80.0% 46.2% 80.0% 46.2% 84.7% 46.2% 84.7% 46.2% 84.7%

Ovarian can-
cer

26.9% 78.5% 26.9% 78.5% 42.3% 78.5% 42.3% 84.3% 50.0% 84.3% 50.0% 86.2%

Pancreatitis 19.2% 10.3% 26.9% 39.8% 26.9% 53.5% 26.9% 53.5% 57.7% 62.2% 65.4% 71.2%
Prostate can-
cer

−3.8% - −3.8% - 3.8% 4.0% 42.3% 6.2% 42.3% 10.1% 42.3% 38.5%

Psoriasis 0.0% 6.5% 0.0% 31.4% 3.8% 74.0% 19.2% 80.1% 23.1% 80.1% 61.5% 80.1%
Sarcoidosis 0.0% 69.3% 3.8% 74.0% 50.0% 79.8% 92.3% 79.8% 92.3% 79.8% 92.3% 79.8%
Tumor of
stomach

15.4% 69.8% 34.6% 69.8% 65.4% 79.4% 65.4% 79.4% 65.4% 84.6% 65.4% 84.6%

Table 2: Relative increase in privacy for both defense mechanisms in relation to a fixed maximal decrease in accuracy.
“-” means that the respective maximal decrease in accuracy was not achievable with any ε we tested for. A negative
value means that the attack’s success rate could, in this case, even exceed the success rate with all miRNAs taken into
account.
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∆min
priv 30.0% 40.0% 50.0% 60.0% 70.0% 80.0%

Disease ∆m
acc ∆ε

acc ∆m
acc ∆ε

acc ∆m
acc ∆ε

acc ∆m
acc ∆ε

acc ∆m
acc ∆ε

acc ∆m
acc ∆ε

acc

Periodontitis 1.9% −1.9% 1.9% −1.9% 2.6% −1.9% 2.6% −1.9% 2.6% −0.8% 2.6% 2.9%
Renal cancer 0.0% 2.3% 1.7% 2.3% 1.7% 2.3% 1.7% 2.3% 2.5% 3.1% 4.8% 7.0%
Wilms tumor 5.2% 1.4% 5.2% 1.7% 5.5% 2.2% 5.5% 2.8% 8.1% 3.2% 15.5% 11.3%
Benign
prostate
hyperplasia

2.7% 0.5% 2.7% 0.6% 3.5% 0.6% 5.0% 0.9% 5.6% 0.9% 5.6% 5.5%

Chronic ob-
structive pul-
monary dis-
ease (COPD)

7.9% 3.3% 12.0% 3.3% 12.0% 3.3% 15.4% 4.1% 15.6% 5.3% 15.6% 9.0%

Colon cancer 0.7% 0.8% 2.4% 1.3% 2.4% 1.3% 3.3% 1.9% 3.9% 3.3% 7.7% 9.4%
Ductal ade-
nocarcinoma

2.8% 0.1% 2.8% 0.4% 5.2% 0.4% 5.2% 1.8% 6.4% 4.6% 6.4% 6.4%

Glioma 0.0% 1.2% 0.0% 1.2% 0.4% 1.2% 0.4% 1.4% 1.1% 2.1% 1.1% 2.8%
Lung cancer 0.7% −1.5% 1.0% −1.5% 6.6% −1.5% 8.1% −1.5% 11.2% 0.2% 18.2% 5.5%
Melanoma 3.7% 3.4% 5.0% 3.4% 7.5% 4.1% 7.5% 4.9% 7.5% 6.5% 10.0% 11.2%
Multiple
sclerosis

0.9% −0.0% 0.9% 0.1% 0.9% 0.7% 2.3% 0.7% 8.1% 3.8% 8.1% 6.7%

Myocardial
infarction

2.8% 0.0% 3.6% 0.4% 7.2% 0.4% 7.3% 1.3% 7.3% 3.3% 11.2% 6.7%

Non-
ischaemic
systolic heart
failure

2.0% −2.6% 2.0% −2.6% 8.5% −2.1% 8.5% −2.1% 9.3% −1.5% 9.3% 2.5%

Ovarian can-
cer

1.3% −0.7% 1.3% −0.7% 5.5% −0.7% 6.7% −0.7% 9.0% −0.7% 9.0% 2.5%

Pancreatitis 3.8% 0.8% 3.8% 1.9% 3.8% 1.9% 4.5% 3.1% 7.9% 4.3% 7.9% 7.9%
Prostate can-
cer

2.7% 4.8% 2.7% 5.0% 7.6% 5.0% 7.6% 5.6% 7.6% 5.6% 11.5% 8.9%

Psoriasis 4.3% 1.0% 4.3% 1.3% 4.3% 1.3% 4.3% 1.4% 5.8% 1.4% 10.0% 2.1%
Sarcoidosis 1.4% −0.2% 1.6% −0.2% 2.2% −0.2% 2.2% −0.2% 2.2% 0.6% 2.2% 5.3%
Tumor of
stomach

0.9% −0.0% 1.7% −0.0% 2.0% −0.0% 2.0% −0.0% 5.1% 1.1% 5.1% 3.3%

Table 3: Relative decrease in accuracy for both defense mechanisms in relation to a fixed minimal increase in privacy.
A negative value means that the accuracy could, in this case, even exceed the baseline accuracy (utility).
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